Dynamics of uranyl peroxide nanocapsules.

نویسندگان

  • May Nyman
  • Todd M Alam
چکیده

Discrete aqueous metal oxide polyionic clusters that include aluminum polycations, transition-metal polyoxometalates, and the actinyl peroxide clusters have captivated the interest of scientists in the realm of both their fundamental and applied chemistries. Yet the counterions for these polycations or polyanions are often ignored, even though they are imperative for solubility, crystallization, purification, and even templating cluster formation. The actinyl peroxide clusters have counterions not only external, but internal to the hollow peroxide capsules. In this study, we reveal the dynamic behavior of these internal alkali counterions via solid-state and liquid NMR experiments. These studies on two select cluster geometries, those containing 24 and 28 uranyl polyhedra, respectively, show that the capsules-like clusters are not rigid entities. Rather, the internal alkalis both have mobility inside the capsules, as well as exchange with species in the media in which they are dissolved. The alkali mobilities are affected by both what is inside the clusters as well as the composition of the dissolving medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uranyl peroxide enhanced nuclear fuel corrosion in seawater.

The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges,...

متن کامل

Cage clusters built from uranyl ions bridged through peroxo and 1-hydroxyethane-1,1-diphosphonic acid ligands.

The family of cage clusters built by uranyl ions bridged through bidentate peroxide groups has been expanded by incorporation of 1-hydroxyethane-1,1-diphosphonic (etidronic) acid ligands. Six cage clusters containing from 16 to 64 uranyl ions, as well as from eight to 32 etidronic acid ligands have been synthesized and characterized. Incorporation of etidronic acid ligands introduces both new c...

متن کامل

Nanostructured Systems Containing Rutin: In Vitro Antioxidant Activity and Photostability Studies

The improvement of the rutin photostability and its prolonged in vitro antioxidant activity were studied by means of its association with nanostructured aqueous dispersions. Rutin-loaded nanocapsules and rutin-loaded nanoemulsion showed mean particle size of 124.30 ± 2.06 and 124.17 ± 1.79, respectively, polydispersity index below 0.20, negative zeta potential, and encapsulation efficiency clos...

متن کامل

A comprehensive comparison of transition-metal and actinyl polyoxometalates.

While the d(0) transition-metal POMs of Group V (V(5+), Nb(5+), Ta(5+)) and Group VI (Mo(6+), W(6+)) have been known for more than a century, the actinyl peroxide POMs, specifically those built of uranyl triperoxide or uranyl dihydroxidediperoxide polyhedra, were only realized within the last decade. While virtually every metal on the Periodic Table can form discrete clusters of some type, the ...

متن کامل

The coordination of uranyl in water: a combined quantum chemical and molecular simulation study.

The coordination environment of uranyl in water has been studied using a combined quantum mechanical and molecular dynamics approach. Multiconfigurational wave function calculations have been performed to generate pair potentials between uranyl and water. The quantum chemically determined energies have been used to fit parameters in a polarizable force field with an added charge transfer term. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 49  شماره 

صفحات  -

تاریخ انتشار 2012